

II Semester M.Sc. Degree Examination, June/July 2014 (2010-11 & Onwards) (NS) CHEMISTRY C-201 : Inorganic Chemistry – II (Coordination Chemistry)

Time : 3 Hours

Instruction : Answer question 1 and any five of the remaining.

- 1. Answer any ten of the following :
 - a) Formation constant of $[Ni(en)_2]^{2+}$ is higher than that of $[Ni(NH_3)_6]^{2+}$. Explain.
 - b) 'Isocyanide is not an obligatory π acid'. Comment.
 - c) Calculate the magnetic moment of the complexes K_3 [Fe(C₂O₄)₃]. 3H₂O and $[CO(NH_3)_6] Cl_3$ using spin only formula.
 - d) Give the splitting pattern of the ground term d^2 system in an octahedral field. Give their relative energies,
 - e) What is CFSE ? Calculate CFSE for the complex $[COF_6]^{4-}$.
 - f) How are CO and H⁻ peaks in hydrido carbonyl complexes distinguished using infrared spectroscopic technique? Explain.
 - g) Bring out the relationship between successive formation constant and overall stability constant of a complex with an example.
 - h) Aqueous MnO₄⁻ solution is intensely colored while MnCl₂ solution is almost colorless. Account for this.
 - i) Predict the geometrics of metal complexes whose coordination numbers are 5 and 6.
 - i) State the selection rules in electronic spectroscopy.
 - k) Explain the bonding in dihydrogen complexes.
 - I) What is steric factor ? Explain.

 $(10 \times 2 = 20)$

Max. Marks: 80

PG – 227

- 2. a) Describe the utility of ORD technique in determining the absolute configuration of [Co(s-alanine)₃] and [Co(en)₂ (s-glutamate)]⁺ complexes.
 - b) Write the Orgel diagram for a d² octahedral complex. How could it be used for interpreting the spectral properties of $[Ni(H_2O)_6]^{2+}$ and $[V(H_2O)_6]^{3+}$?
 - c) Discuss the spectral, magnetic and bonding characteristics of $[CoF_6]^{3-}$ with the help of MO energy level diagram. (4+4+4)
- 3. a) What are the different ways of bonding of O_2 to metal complexes ? Give an example for each. How does O_2 bind to Vaska's complex ?
 - b) Discuss any two experimental evidences for covalency in M-L bonding of complexes.
 - c) Explain ferro, ferri and antiferromagnetism.
- 4. a) The electronic absorption spectrum of $[Cr (H_2O)_6]^{3+}$ exhibits bonds at 17,400, 24,500 and 37,500 cm⁻¹. Draw an Orgel diagram to assign the transitions and find out Dq, B' and β (Given B for Cr³⁺ is 918 cm⁻¹).
 - b) Give the salient features of CFT. Draw and explain the splitting pattern of metal d-orbitals in [NiCl₄]²⁻ and [Ni(H₂O)₆]²⁺ complexes.
 - c) Write a note on self assembly in supra molecules.
- 5. a) Describe the experimental determination of stability constant of a metal complex by pH-metric method.
 - b) Explain Gauy's method for the determination of magnetic susceptibility of a compound.
 - c) Write a structures of $Mn_2(CO)_{10}$ and $Fe_3(CO)_{12}$. Explain the bonding of CO in these complexes. (4+4+4)
- 6. a) Discuss stereochemical non-rigidity in Fe₂Cp₂ (CO)₄. Which spectroscopic technique is used for its study ? Explain.
 - b) How are Tanabe-Sugans diagrams different from Orgel diagrams ? Explain the spectral features of [Co(NH₃)₅ Cl]²⁺.
 - c) Discuss the factors affecting the stability of metal complexes. (4+4+4)
- 7. a) Give an account of the structure and bonding in metal nitrosyl complexes.
 - b) What is Jahn-Teller distortion ? Discuss its consequences in transition metal complexes.
 - c) Write a note on spectrochemical series.

(4+4+4)

(4+4+4)

(4+4+4)